Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
mBio ; 14(3): e0080023, 2023 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-37140436

RESUMEN

Klebsiella pneumoniae is a leading cause of nosocomial infections, including pneumonia, bacteremia, and urinary tract infections. Treatment options are increasingly restricted by the high prevalence of resistance to frontline antibiotics, including carbapenems, and the recently identified plasmid-conferred colistin resistance. The classical pathotype (cKp) is responsible for most of the nosocomial infections observed globally, and these isolates are often multidrug resistant. The hypervirulent pathotype (hvKp) is a primary pathogen capable of causing community-acquired infections in immunocompetent hosts. The hypermucoviscosity (HMV) phenotype is strongly associated with the increased virulence of hvKp isolates. Recent studies demonstrated that HMV requires capsule (CPS) synthesis and the small protein RmpD but is not dependent on the increased amount of capsule associated with hvKp. Here, we identified the structure of the capsular and extracellular polysaccharide isolated from hvKp strain KPPR1S (serotype K2) with and without RmpD. We found that the polymer repeat unit structure is the same in both strains and that it is identical to the K2 capsule. However, the chain length of CPS produced by strains expressing rmpD demonstrates more uniform length. This property was reconstituted in CPS from Escherichia coli isolates that possess the same CPS biosynthesis pathway as K. pneumoniae but naturally lack rmpD. Furthermore, we demonstrate that RmpD binds Wzc, a conserved capsule biosynthesis protein required for CPS polymerization and export. Based on these observations, we present a model for how the interaction of RmpD with Wzc could impact CPS chain length and HMV. IMPORTANCE Infections caused by Klebsiella pneumoniae continue to be a global public health threat; the treatment of these infections is complicated by the high frequency of multidrug resistance. K. pneumoniae produces a polysaccharide capsule required for virulence. Hypervirulent isolates also have a hypermucoviscous (HMV) phenotype that increases virulence, and we recently demonstrated that a horizontally acquired gene, rmpD, is required for HMV and hypervirulence but that the identity of the polymeric product(s) in HMV isolates is uncertain. Here, we demonstrate that RmpD regulates capsule chain length and interacts with Wzc, a part of the capsule polymerization and export machinery shared by many pathogens. We further show that RmpD confers HMV and regulates capsule chain length in a heterologous host (E. coli). As Wzc is a conserved protein found in many pathogens, it is possible that RmpD-mediated HMV and increased virulence may not be restricted to K. pneumoniae.


Asunto(s)
Infección Hospitalaria , Infecciones por Klebsiella , Humanos , Escherichia coli , Virulencia/genética , Factores de Virulencia/genética , Klebsiella pneumoniae , Antibacterianos , Polisacáridos , Infecciones por Klebsiella/epidemiología
2.
J Bacteriol ; 203(16): e0016521, 2021 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-34060904

RESUMEN

The Yersinia pestis pH 6 antigen (PsaA) forms fimbria-like structures and is required for full virulence during bubonic plague. High temperature and low pH regulate PsaA production, and while recent work has uncovered the molecular aspects of temperature control, the mechanisms underlying this unusual regulation by pH are poorly understood. Using defined growth conditions, we recently showed that high levels of PsaE and PsaF (two regulatory proteins required for expression of psaA) are present at mildly acidic pH, but these levels are greatly reduced at neutral pH, resulting in low psaA expression. In prior work, the use of translational reporters suggested that pH had no impact on translation of psaE and psaF, but rather affected protein stability of PsaE and/or PsaF. Here, we investigated the pH-dependent posttranslational mechanisms predicted to regulate PsaE and PsaF stability. Using antibodies that recognize the endogenous proteins, we showed that the amount of PsaE and PsaF is defined by a distinct pH threshold. Analysis of histidine residues in the periplasmic domain of PsaF suggested that it functions as a pH sensor and indicated that the presence of PsaF is important for PsaE stability. At neutral pH, when PsaF is absent, PsaE appears to be targeted for proteolytic degradation by regulated intramembrane proteolysis. Together, our work shows that Y. pestis utilizes PsaF as a pH sensor to control psaA expression by enhancing the stability of PsaE, an essential psaA regulatory protein. IMPORTANCE Yersinia pestis is a bacterial pathogen that causes bubonic plague in humans. As Y. pestis cycles between fleas and mammals, it senses the environment within each host to appropriately control gene expression. PsaA is a protein that forms fimbria-like structures and is required for virulence. High temperature and low pH together stimulate psaA transcription by increasing the levels of two essential integral membrane regulators, PsaE and PsaF. Histidine residues in the PsaF periplasmic domain enable it to function as a pH sensor. In the absence of PsaF, PsaE (a DNA-binding protein) appears to be targeted for proteolytic degradation, thus preventing expression of psaA. This work offers insight into the mechanisms that bacteria use to sense pH and control virulence gene expression.


Asunto(s)
Antígenos Bacterianos/metabolismo , Proteínas Bacterianas/metabolismo , Membrana Celular/metabolismo , Regulación Bacteriana de la Expresión Génica , Complejo de Proteína del Fotosistema I/metabolismo , Yersinia pestis/metabolismo , Ácidos/metabolismo , Antígenos Bacterianos/genética , Proteínas Bacterianas/genética , Membrana Celular/genética , Concentración de Iones de Hidrógeno , Complejo de Proteína del Fotosistema I/genética , Transporte de Proteínas , Yersinia pestis/genética
3.
mBio ; 11(5)2020 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-32963003

RESUMEN

Klebsiella pneumoniae has a remarkable ability to cause a wide range of human diseases. It is divided into two broad classes: classical strains that are a notable problem in health care settings due to multidrug resistance, and hypervirulent (hv) strains that are historically drug sensitive but able to establish disease in immunocompetent hosts. Alarmingly, there has been an increased frequency of clinical isolates that have both drug resistance and hv-associated genes. One such gene, rmpA, encodes a transcriptional regulator required for maximal capsule (cps) gene expression and confers hypermucoviscosity (HMV). This link has resulted in the assumption that HMV is caused by elevated capsule production. However, we recently reported a new cps regulator, RmpC, and ΔrmpC mutants have reduced cps expression but retain HMV, suggesting that capsule production and HMV may be separable traits. Here, we report the identification of a small protein, RmpD, that is essential for HMV but does not impact capsule. RmpD is 58 residues with a putative N-terminal transmembrane domain and highly positively charged C-terminal half, and it is conserved among other hv K. pneumoniae strains. Expression of rmpD in trans complements both ΔrmpD and ΔrmpA mutants for HMV, suggesting that RmpD is the key driver of this phenotype. The rmpD gene is located between rmpA and rmpC, within an operon regulated by RmpA. These data, combined with our previous work, suggest a model in which the RmpA-associated phenotypes are largely due to RmpA activating the expression of rmpD to produce HMV and rmpC to stimulate cps expression.IMPORTANCE Capsule is a critical virulence factor in Klebsiella pneumoniae, in both antibiotic-resistant classical strains and hypervirulent strains. Hypervirulent strains usually have a hypermucoviscosity (HMV) phenotype that contributes to their heightened virulence capacity, but the production of HMV is not understood. The transcriptional regulator RmpA is required for HMV and also activates capsule gene expression, leading to the assumption that HMV is caused by hyperproduction of capsule. We have identified a new gene (rmpD) required for HMV but not for capsule production. This distinction between HMV and capsule production will promote a better understanding of the mechanisms of hypervirulence, which is in great need given the alarming increase in clinical isolates with both drug resistance and hypervirulence traits.


Asunto(s)
Proteínas Bacterianas/genética , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/patogenicidad , Moco , Factores de Virulencia/genética , Animales , Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica , Humanos , Infecciones por Klebsiella/microbiología , Klebsiella pneumoniae/metabolismo , Ratones , Ratones Endogámicos C57BL , Fenotipo , Transcripción Genética , Viscosidad
4.
Curr Opin Microbiol ; 54: 95-102, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32062153

RESUMEN

For ∼30 years, two distinct groups of clinical isolates of Klebsiella pneumoniae have been recognized. Classical strains (cKp) are typically isolated from patients with some degree of immunocompromise and are not virulent in mouse models of infection whereas hypervirulent strains (hvKp) are associated with community acquired invasive infections and are highly virulent in mouse models of infection. Hyperproduction of capsule and a hypermucoviscous colony phenotype have been strongly associated with the hypervirulence of hvKp strains. Recent studies have begun to elucidate the relationship between capsule gene expression, hypermucoviscosity and hypervirulence. Additionally, genes associated with hyperproduction of capsule and hypermucoviscosity in hvKp strains have been identified in a few cKp isolates. However, it is not clear how the acquisition of these genes impacts the virulence of cKp isolates. A better understanding of the potential risks of these strains is particularly important given that many of them are resistant to multiple antibiotics, including carbapenems.


Asunto(s)
Cápsulas Bacterianas/genética , Cápsulas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica , Infecciones por Klebsiella/microbiología , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/patogenicidad , Factores de Virulencia/genética , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Genes Bacterianos , Humanos , Klebsiella pneumoniae/citología , Ratones , Mutación , Virulencia/genética , Factores de Virulencia/metabolismo
5.
J Bacteriol ; 201(16)2019 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-31138630

RESUMEN

PsaA, the subunit of the fimbria originally referred to as the "pH 6 antigen," is required for full virulence of Yersinia pestis during bubonic plague. The expression of psaA is dependent upon specific environmental signals, and while the signals (high temperature and acidic pH) are defined, the mechanisms underlying this regulation remain unclear. In the closely related species Yersinia pseudotuberculosis, psaA transcription requires two regulatory genes, psaE and psaF, and it is speculated that posttranscriptional regulation of PsaE and/or PsaF contributes to the regulation of psaA transcription. Few studies have examined the regulation of psaA expression in Y. pestis, and prior to this work, the roles of psaE and psaF in Y. pestis had not been defined. The data presented here show that both psaE and psaF are required for psaA transcription in Y. pestis and that the impact of temperature and pH is mediated through discrete posttranscriptional effects on PsaE and PsaF. By generating antibodies that recognize endogenous PsaE and PsaF, we determined that the levels of both proteins are impacted by temperature and pH. High temperature is required for psaE and psaF translation via discrete mechanisms mediated by the mRNA 5' untranslated region (UTR) upstream of each gene. Additionally, levels of PsaE and PsaF are impacted by pH. We show that PsaF enhances the stability of PsaE, and thus, both PsaE and PsaF are required for psaA transcription. Our data indicate that the environmental signals (temperature and pH) impact the expression of psaA by affecting the translation of psaE and psaF and the stability of PsaE and PsaF.IMPORTANCEY. pestis is a Gram-negative bacterial pathogen that causes bubonic plague. As a vector-borne pathogen, Y. pestis fluctuates between an arthropod vector (flea) and mammalian host. As such, Y. pestis must recognize environmental signals encountered within each host environment and respond by appropriately regulating gene expression. PsaA is a key Y. pestis mammalian virulence determinant that forms fimbriae. Our work provides evidence that Y. pestis utilizes multiple posttranscriptional mechanisms to regulate the levels of two PsaA regulatory proteins in response to both temperature and pH. This study offers insight into mechanisms that bacteria utilize to sense environmental cues and regulate the expression of determinants required for mammalian disease.


Asunto(s)
Antígenos Bacterianos/metabolismo , Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica , Complejo de Proteína del Fotosistema I/metabolismo , Antígenos Bacterianos/genética , Proteínas Bacterianas/genética , Complejo de Proteína del Fotosistema I/genética , Temperatura , Yersinia pestis/genética , Yersinia pestis/metabolismo , Yersinia pseudotuberculosis/genética , Yersinia pseudotuberculosis/metabolismo
6.
mBio ; 10(2)2019 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-30914502

RESUMEN

The polysaccharide capsule is an essential virulence factor for Klebsiella pneumoniae in both community-acquired hypervirulent strains as well as health care-associated classical strains that are posing significant challenges due to multidrug resistance. Capsule production is known to be transcriptionally regulated by a number of proteins, but very little is known about how these proteins collectively control capsule production. RmpA and RcsB are two known regulators of capsule gene expression, and RmpA is required for the hypermucoviscous (HMV) phenotype in hypervirulent K. pneumoniae strains. In this report, we confirmed that these regulators performed their anticipated functions in the ATCC 43816 derivative, KPPR1S: rcsB and rmpA mutants are HMV negative and have reduced capsule gene expression. We also identified a novel transcriptional regulator, RmpC, encoded by a gene near rmpA The ΔrmpC strain has reduced capsule gene expression but retains the HMV phenotype. We further showed that a regulatory cascade exists in which KvrA and KvrB, the recently characterized MarR-like regulators, and RcsB contribute to capsule regulation through regulation of the rmpA promoter and through additional mechanisms. In a murine pneumonia model, the regulator mutants have a range of colonization defects, suggesting that they regulate virulence factors in addition to capsule. Further testing of the rmpC and rmpA mutants revealed that they have distinct and overlapping functions and provide evidence that HMV is not dependent on overproduction of capsule. This distinction will facilitate a better understanding of HMV and how it contributes to enhanced virulence of hypervirulent strains.IMPORTANCEKlebsiella pneumoniae continues to be a substantial public health threat due to its ability to cause health care-associated and community-acquired infections combined with its ability to acquire antibiotic resistance. Novel therapeutics are needed to combat this pathogen, and a greater understanding of its virulence factors is required for the development of new drugs. A key virulence factor for K. pneumoniae is the capsule, and community-acquired hypervirulent strains produce a capsule that causes hypermucoidy. We report here a novel capsule regulator, RmpC, and provide evidence that capsule production and the hypermucoviscosity phenotype are distinct processes. Infection studies showing that this and other capsule regulator mutants have a range of phenotypes indicate that additional virulence factors are in their regulons. These results shed new light on the mechanisms controlling capsule production and introduce targets that may prove useful for the development of novel therapeutics for the treatment of this increasingly problematic pathogen.


Asunto(s)
Cápsulas Bacterianas/química , Cápsulas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Regulación Bacteriana de la Expresión Génica , Klebsiella pneumoniae/química , Mutación , Animales , Proteínas Bacterianas/metabolismo , Modelos Animales de Enfermedad , Eliminación de Gen , Redes Reguladoras de Genes , Infecciones por Klebsiella/microbiología , Infecciones por Klebsiella/patología , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/metabolismo , Klebsiella pneumoniae/patogenicidad , Ratones , Fenotipo , Neumonía Bacteriana/microbiología , Neumonía Bacteriana/patología , Virulencia , Viscosidad
7.
mBio ; 10(2)2019 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-30837332

RESUMEN

Gene duplication and subsequent evolutionary divergence have allowed conserved proteins to develop unique roles. The MarR family of transcription factors (TFs) has undergone extensive duplication and diversification in bacteria, where they act as environmentally responsive repressors of genes encoding efflux pumps that confer resistance to xenobiotics, including many antimicrobial agents. We have performed structural, functional, and genetic analyses of representative members of the SlyA/RovA lineage of MarR TFs, which retain some ancestral functions, including repression of their own expression and that of divergently transcribed multidrug efflux pumps, as well as allosteric inhibition by aromatic carboxylate compounds. However, SlyA and RovA have acquired the ability to countersilence horizontally acquired genes, which has greatly facilitated the evolution of Enterobacteriaceae by horizontal gene transfer. SlyA/RovA TFs in different species have independently evolved novel regulatory circuits to provide the enhanced levels of expression required for their new role. Moreover, in contrast to MarR, SlyA is not responsive to copper. These observations demonstrate the ability of TFs to acquire new functions as a result of evolutionary divergence of both cis-regulatory sequences and in trans interactions with modulatory ligands.IMPORTANCE Bacteria primarily evolve via horizontal gene transfer, acquiring new traits such as virulence and antibiotic resistance in single transfer events. However, newly acquired genes must be integrated into existing regulatory networks to allow appropriate expression in new hosts. This is accommodated in part by the opposing mechanisms of xenogeneic silencing and countersilencing. An understanding of these mechanisms is necessary to understand the relationship between gene regulation and bacterial evolution. Here we examine the functional evolution of an important lineage of countersilencers belonging to the ancient MarR family of classical transcriptional repressors. We show that although members of the SlyA lineage retain some ancestral features associated with the MarR family, their cis-regulatory sequences have evolved significantly to support their new function. Understanding the mechanistic requirements for countersilencing is critical to understanding the pathoadaptation of emerging pathogens and also has practical applications in synthetic biology.


Asunto(s)
Enterobacteriaceae/genética , Evolución Molecular , Regulación Bacteriana de la Expresión Génica , Silenciador del Gen , Factores de Transcripción/genética , Transferencia de Gen Horizontal
8.
mBio ; 9(4)2018 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-30087173

RESUMEN

Klebsiella pneumoniae is widely recognized as a pathogen with a propensity for acquiring antibiotic resistance. It is capable of causing a range of hospital-acquired infections (urinary tract infections [UTI], pneumonia, sepsis) and community-acquired invasive infections. The genetic heterogeneity of K. pneumoniae isolates complicates our ability to understand the virulence of K. pneumoniae Characterization of virulence factors conserved between strains as well as strain-specific factors will improve our understanding of this important pathogen. The MarR family of regulatory proteins is widely distributed in bacteria and regulates cellular processes such as antibiotic resistance and the expression of virulence factors. Klebsiella encodes numerous MarR-like proteins, and they likely contribute to the ability of K. pneumoniae to respond to and survive under a wide variety of environmental conditions, including those present in the human body. We tested loss-of-function mutations in all the marR homologues in a murine pneumonia model and found that two (kvrA and kvrB) significantly impacted the virulence of K1 and K2 capsule type hypervirulent (hv) strains and that kvrA affected the virulence of a sequence type 258 (ST258) classical strain. In the hv strains, kvrA and kvrB mutants displayed phenotypes associated with reduced capsule production, mucoviscosity, and transcription from galF and manC promoters that drive expression of capsule synthesis genes. In contrast, kvrA and kvrB mutants in the ST258 strain had no effect on capsule gene expression or capsule-related phenotypes. Thus, KvrA and KvrB affect virulence in classical and hv strains but the effect on virulence may not be exclusively due to effects on capsule production.IMPORTANCE In addition to having a reputation as the causative agent for hospital-acquired infections as well as community-acquired invasive infections, Klebsiella pneumoniae has gained widespread attention as a pathogen with a propensity for acquiring antibiotic resistance. Due to the rapid emergence of carbapenem resistance among K. pneumoniae strains, a better understanding of virulence mechanisms and identification of new potential drug targets are needed. This study identified two novel regulators (KvrA and KvrB) of virulence in K. pneumoniae and demonstrated that their effect on virulence in invasive strains is likely due in part to effects on capsule production (a major virulence determinant) and hypermucoviscosity. KvrA also impacts the virulence of classical strains but does not appear to affect capsule gene expression in this strain. KvrA and KvrB are conserved among K. pneumoniae strains and thus could regulate capsule expression and virulence in diverse strains regardless of capsule type.


Asunto(s)
Proteínas Bacterianas/genética , Regulación Bacteriana de la Expresión Génica , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/patogenicidad , Factores de Virulencia/genética , Animales , Cápsulas Bacterianas/genética , Femenino , Inmunidad Innata , Ratones , Ratones Endogámicos C57BL , Mutación , Fenotipo , Neumonía/inmunología , Neumonía/microbiología , Factores de Transcripción/genética , Virulencia/genética
9.
mSphere ; 2(4)2017.
Artículo en Inglés | MEDLINE | ID: mdl-28861522

RESUMEN

Klebsiella pneumoniae is considered a significant public health threat because of the emergence of multidrug-resistant strains and the challenge associated with treating life-threatening infections. Capsule, siderophores, and adhesins have been implicated as virulence determinants of K. pneumoniae, yet we lack a clear understanding of how this pathogen causes disease. In a previous screen for virulence genes, we identified a potential new virulence locus and constructed a mutant (smr) with this locus deleted. In this study, we characterize the smr mutant and show that this mutation renders K. pneumoniae avirulent in a pneumonia model of infection. The smr mutant was expected to have a deletion of three genes, but subsequent genome sequencing indicated that a much larger deletion had occurred. Further analysis of the deleted region indicated that the virulence defect of the smr mutant could be attributed to the loss of FepB, a periplasmic protein required for import of the siderophore enterobactin. Interestingly, a ΔfepB mutant was more attenuated than a mutant unable to synthesize enterobactin, suggesting that additional processes are affected. As FepB is highly conserved among the members of the family Enterobacteriaceae, therapeutic targeting of FepB may be useful for the treatment of Klebsiella and other bacterial infections. IMPORTANCE In addition to having a reputation as the causative agent of several types of hospital-acquired infections, Klebsiella pneumoniae has gained widespread attention as a pathogen with a propensity for acquiring antibiotic resistance. It is capable of causing a range of infections, including urinary tract infections, pneumonia, and sepsis. Because of the rapid emergence of carbapenem resistance among Klebsiella strains, there is a dire need for a better understanding of virulence mechanisms and identification of new drug targets. Here, we identify the periplasmic transporter FepB as one such potential target.

10.
CBE Life Sci Educ ; 15(3)2016.
Artículo en Inglés | MEDLINE | ID: mdl-27496358

RESUMEN

Certain racial and ethnic groups, individuals with disabilities, and those from low socioeconomic backgrounds remain underrepresented (UR) in the biomedical sciences. This underrepresentation becomes more extreme at each higher education stage. To support UR scholars during the critical transition from baccalaureate to PhD, we established an intensive, 1-yr postbaccalaureate training program. We hypothesized that this intervention would strengthen each participant's competitiveness for leading PhD programs and build a foundation of skills and self-efficacy important for success during and after graduate school. Scholar critical analysis skills, lab technique knowledge, and Graduate Record Examination scores all improved significantly during the program. Scholars reported significant confidence growth in 21 of 24 categories related to success in research careers. In 5 yr, 91% (41/45) of scholars transitioned directly into PhD programs. Importantly, 40% (18/45) of participating postbaccalaureate scholars had previously been declined acceptance into graduate school; however, 17/18 of these scholars directly entered competitive PhD programs following our training program. Alumni reported they were "extremely well" prepared for graduate school, and 95% (39/41) are currently making progress to graduation with a PhD. In conclusion, we report a model for postbaccalaureate training that could be replicated to increase participation and success among UR scholars in the biomedical sciences.


Asunto(s)
Investigación Biomédica/educación , Educación de Postgrado , Femenino , Humanos , Masculino , Grupos Minoritarios/educación , Evaluación de Programas y Proyectos de Salud
11.
J Bacteriol ; 198(12): 1725-1734, 2016 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-27044629

RESUMEN

UNLABELLED: The Yersinia enterocolitica Ysa type III secretion system (T3SS) is associated with intracellular survival, and, like other characterized T3SSs, it is tightly controlled. Expression of the ysa genes is only detected following growth at low temperatures (26°C) and in high concentrations of sodium chloride (290 mM) in the medium. The YsrSTR phosphorelay (PR) system is required for ysa expression and likely responds to NaCl. During our investigations into the Ysr PR system, we discovered that genes YE3578 and YE3579 are remarkably similar to ysrR and ysrS, respectively, and are probably a consequence of a gene duplication event. The amino acid differences between YE3578 and ysrR are primarily clustered into two short regions. The differences between YE3579 and ysrS are nearly all located in the periplasmic sensing domain; the cytoplasmic domains are 98% identical. We investigated whether these paralogs were capable of activating ysa gene expression. We found that the sensor paralog, named DygS, is capable of compensating for loss of ysrS, but the response regulator paralog, DygR, cannot complement a ysrR gene deletion. In addition, YsrR, but not DygR, interacts with the histidine phosphorelay protein YsrT. Thus, DygS likely activates ysa gene expression in response to a signal other than NaCl and provides an example of a phosphorelay system in which two sensor kinases feed into the same regulatory pathway. IMPORTANCE: All organisms need mechanisms to promote survival in changing environments. Prokaryotic phosphorelay systems are minimally comprised of a histidine kinase (HK) that senses an extracellular stimulus and a response regulator (RR) but can contain three or more proteins. Through gene duplication, a unique hybrid HK was created. We show that, while the hybrid appears to retain all of the phosphorelay functions, it responds to a different signal than the original. Both HKs transmit the signal to the same RR, which activates a promoter that transcribes a set of genes encoding a type III secretion system (T3SS) whose function is not yet evident. The significance of this work lies in finding that two HKs regulate this T3SS, highlighting its importance.


Asunto(s)
Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica , Proteínas Quinasas/metabolismo , Sistemas de Secreción Tipo III/genética , Yersiniosis/microbiología , Yersinia enterocolitica/enzimología , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Humanos , Datos de Secuencia Molecular , Operón , Unión Proteica , Proteínas Quinasas/química , Proteínas Quinasas/genética , Alineación de Secuencia , Sistemas de Secreción Tipo III/metabolismo , Yersinia enterocolitica/química , Yersinia enterocolitica/genética , Yersinia enterocolitica/metabolismo
12.
Trends Microbiol ; 24(4): 239-241, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26875618

RESUMEN

Yersinia pestis causes bubonic plague, a fulminant disease where host immune responses are abrogated. Recently developed in vivo models of plague have resulted in new ideas regarding bacterial spread in the body. Deciphering bacterial spread is key to understanding Y. pestis and the immune responses it encounters during infection.


Asunto(s)
Peste/microbiología , Yersinia pestis/fisiología , Animales , Interacciones Huésped-Patógeno , Humanos , Inmunidad Innata/inmunología , Ganglios Linfáticos/inmunología , Ganglios Linfáticos/microbiología , Ganglios Linfáticos/patología , Peste/inmunología , Piel/inmunología , Piel/microbiología , Virulencia , Yersinia pestis/crecimiento & desarrollo , Yersinia pestis/inmunología , Yersinia pestis/patogenicidad
13.
Infect Immun ; 83(7): 2855-61, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25939507

RESUMEN

UNLABELLED: Vector-borne pathogens are inoculated in the skin of mammals, most likely in the dermis. Despite this, subcutaneous (s.c.) models of infection are broadly used in many fields, including Yersinia pestis pathogenesis. We expand on a previous report where we implemented intradermal (i.d.) inoculations to study bacterial dissemination during bubonic plague and compare this model with an s.c. MODEL: We found that i.d. inoculations result in faster kinetics of infection and that bacterial dose influenced mouse survival after i.d. but not s.c. inoculation. Moreover, a deletion mutant of rovA, previously shown to be moderately attenuated in the s.c. model, was severely attenuated in the i.d. MODEL: Lastly, based on previous observations where a population bottleneck from the skin to lymph nodes was observed after i.d., but not after s.c., inoculations, we used the latter model as a strategy to identify an additional bottleneck in bacterial dissemination from lymph nodes to the bloodstream. Our data indicate that the more biologically relevant i.d. model of bubonic plague differs significantly from the s.c. model in multiple aspects of infection. These findings reveal adaptations of Y. pestis to the dermis and how these adaptations can define the progression of disease. They also emphasize the importance of using a relevant route of infection when addressing host-pathogen interactions.


Asunto(s)
Adaptación Biológica , Dermis/microbiología , Peste/microbiología , Yersinia pestis/fisiología , Animales , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Femenino , Ratones Endogámicos C57BL , Análisis de Supervivencia
14.
mBio ; 6(1): e02302-14, 2015 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-25691593

RESUMEN

UNLABELLED: Inhalation of Yersinia pestis results in primary pneumonic plague, a highly lethal and rapidly progressing necrotizing pneumonia. The disease begins with a period of extensive bacterial replication in the absence of disease symptoms, followed by the sudden onset of inflammatory responses that ultimately prove fatal. Very little is known about the bacterial and host factors that contribute to the rapid biphasic progression of pneumonic plague. In this work, we analyzed the in vivo transcription kinetics of 288 bacterial open reading frames previously shown by microarray analysis to be dynamically regulated in the lung. Using this approach combined with bacterial genetics, we were able to identify five Y. pestis genes that contribute to the development of pneumonic plague. Deletion of one of these genes, ybtX, did not alter bacterial survival but attenuated host inflammatory responses during late-stage disease. Deletion of ybtX in another lethal respiratory pathogen, Klebsiella pneumoniae, also resulted in diminished host inflammation during infection. Thus, our in vivo transcriptional screen has identified an important inflammatory mediator that is common to two Gram-negative bacterial pathogens that cause severe pneumonia. IMPORTANCE: Yersinia pestis is responsible for at least three major pandemics, most notably the Black Death of the Middle Ages. Due to its pandemic potential, ease of dissemination by aerosolization, and a history of its weaponization, Y. pestis is categorized by the Centers for Disease Control and Prevention as a tier 1 select agent most likely to be used as a biological weapon. To date, there is no licensed vaccine against Y. pestis. Importantly, an early "silent" phase followed by the rapid onset of nondescript influenza-like symptoms makes timely treatment of pneumonic plague difficult. A more detailed understanding of the bacterial and host factors that contribute to pathogenesis is essential to understanding the progression of pneumonic plague and developing or enhancing treatment options.


Asunto(s)
Perfilación de la Expresión Génica , Factores de Virulencia/biosíntesis , Yersinia pestis/genética , Yersinia pestis/patogenicidad , Eliminación de Gen , Interacciones Huésped-Patógeno , Inflamación/inmunología , Inflamación/patología , Peste/microbiología , Peste/patología , Neumonía Bacteriana/inmunología , Neumonía Bacteriana/patología , Transcripción Genética , Factores de Virulencia/genética , Yersinia pestis/inmunología
15.
PLoS Pathog ; 11(1): e1004587, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25611317

RESUMEN

The series of events that occurs immediately after pathogen entrance into the body is largely speculative. Key aspects of these events are pathogen dissemination and pathogen interactions with the immune response as the invader moves into deeper tissues. We sought to define major events that occur early during infection of a highly virulent pathogen. To this end, we tracked early dissemination of Yersinia pestis, a highly pathogenic bacterium that causes bubonic plague in mammals. Specifically, we addressed two fundamental questions: (1) do the bacteria encounter barriers in disseminating to draining lymph nodes (LN), and (2) what mechanism does this nonmotile bacterium use to reach the LN compartment, as the prevailing model predicts trafficking in association with host cells. Infection was followed through microscopy imaging in addition to assessing bacterial population dynamics during dissemination from the skin. We found and characterized an unexpected bottleneck that severely restricts bacterial dissemination to LNs. The bacteria that do not pass through this bottleneck are confined to the skin, where large numbers of neutrophils arrive and efficiently control bacterial proliferation. Notably, bottleneck formation is route dependent, as it is abrogated after subcutaneous inoculation. Using a combination of approaches, including microscopy imaging, we tested the prevailing model of bacterial dissemination from the skin into LNs and found no evidence of involvement of migrating phagocytes in dissemination. Thus, early stages of infection are defined by a bottleneck that restricts bacterial dissemination and by neutrophil-dependent control of bacterial proliferation in the skin. Furthermore, and as opposed to current models, our data indicate an intracellular stage is not required by Y. pestis to disseminate from the skin to draining LNs. Because our findings address events that occur during early encounters of pathogen with the immune response, this work can inform efforts to prevent or control infection.


Asunto(s)
Derrame de Bacterias , Peste/microbiología , Peste/transmisión , Yersinia pestis/patogenicidad , Animales , Derrame de Bacterias/genética , Dermis/inmunología , Dermis/microbiología , Femenino , Ganglios Linfáticos/inmunología , Ganglios Linfáticos/microbiología , Vasos Linfáticos/inmunología , Vasos Linfáticos/microbiología , Ratones , Ratones Endogámicos C57BL , Neutrófilos/inmunología , Organismos Modificados Genéticamente , Piel/inmunología , Virulencia/genética , Yersinia pestis/fisiología
16.
Genome Announc ; 2(5)2014 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-25291761

RESUMEN

Klebsiella pneumoniae is an urgent public health threat due to the spread of carbapenem-resistant strains causing serious, and frequently fatal, infections. To facilitate genetic, molecular, and immunological studies of this pathogen, we report the complete chromosomal sequence of a genetically tractable, prototypical strain used in animal models.

17.
F1000Prime Rep ; 6: 64, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25165563

RESUMEN

Klebsiella pneumoniae is the causative agent of a variety of diseases, including pneumonia, urinary tract infections, septicemia, and the recently recognized pyogenic liver abscesses (PLA). Renewed efforts to identify and understand the bacterial determinants required to cause disease have come about because of the worldwide increase in the isolation of strains resistant to a broad spectrum of antibiotics. The recent increased isolation of carbapenem-resistant strains further reduces the available treatment options. The rapid geographic spread of the resistant isolates and the spread to other pathogens are of particular concern. For many years, the best characterized virulence determinants were capsule, lipopolysaccharide, siderophores, and types 1 and 3 fimbriae. Recent efforts to expand this list include in vivo screens and whole-genome sequencing. However, we still know little about how this bacterium is able to cause disease. Some recent clonal analyses of K. pneumoniae strains indicate that there are distinct clonal groups, some of which may be associated with specific disease syndromes. However, what makes one clonal group more virulent and what changes the disease pattern are not yet clear and remain important questions for the future.

18.
Infect Immun ; 81(11): 4208-19, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24002058

RESUMEN

The transcriptional regulator RovA positively regulates transcription of the Yersinia enterocolitica virulence gene inv. Invasin, encoded by inv, is important for establishment of Y. enterocolitica infection. However, a rovA mutant is more attenuated for virulence than an inv mutant, implying that RovA regulates additional virulence genes. When the Y. enterocolitica RovA regulon was defined by microarray analysis, YE1984 and YE1985 were among the genes identified as being upregulated by RovA. Since these genes are homologous to Xenorhabdus nematophila cytotoxin genes xaxA and xaxB, we named them yaxA and yaxB, respectively. In this work, we demonstrate the effects of YaxAB on the course of infection in the murine model. While a yaxAB mutant (ΔyaxAB) is capable of colonizing mice at the same level as the wild type, it slightly delays the course of infection and results in differing pathology in the spleen. Further, we found that yaxAB encode a probable cytotoxin capable of lysing mammalian cells, that both YaxA and YaxB are required for cytotoxic activity, and that the two proteins associate. YaxAB-mediated cell death occurs via osmotic lysis through the formation of distinct membrane pores. In silico tertiary structural analysis identified predicted structural homology between YaxA and proteins in pore-forming toxin complexes from Bacillus cereus (HBL-B) and Escherichia coli (HlyE). Thus, it appears that YaxAB function as virulence factors by inducing cell lysis through the formation of pores in the host cell membrane. This characterization of YaxAB supports the hypothesis that RovA regulates expression of multiple virulence factors in Y. enterocolitica.


Asunto(s)
Proteínas Bacterianas/metabolismo , Toxinas Bacterianas/biosíntesis , Regulación Bacteriana de la Expresión Génica , Factores de Transcripción/metabolismo , Yersiniosis/patología , Yersinia enterocolitica/genética , Animales , Modelos Animales de Enfermedad , Femenino , Eliminación de Gen , Perfilación de la Expresión Génica , Ratones , Ratones Endogámicos BALB C , Análisis por Micromatrices , Conformación Proteica , Regulón , Homología de Secuencia de Aminoácido , Bazo/patología , Yersiniosis/microbiología
19.
Genome Announc ; 1(3)2013 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-23723407

RESUMEN

Infection with multidrug-resistant Klebsiella pneumoniae is a significant problem worldwide, requiring a better understanding of how various strains are able to defeat current antibiotic therapies and cause disease. Here, we report the draft genome sequences of three K. pneumoniae strains harboring the SHV-18, KPC-2, or NDM-1 ß-lactamases.

20.
Infect Immun ; 81(7): 2478-87, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23630961

RESUMEN

The highly pathogenic Yersinia enterocolitica strains have a chromosomally encoded type III secretion system (T3SS) that is expressed and functional in vitro only when the bacteria are cultured at 26 °C. Mutations that render this system nonfunctional are slightly attenuated in the mouse model of infection only following an oral inoculation and only at early time points postinfection. The discrepancy between the temperature required for the Ysa gene expression and the physiological temperature required for mammalian model systems has made defining the role of this T3SS challenging. Therefore, we explored the use of Drosophila S2 cells as a model system for studying Ysa function. We show here that Y. enterocolitica is capable of infecting S2 cells and replicating intracellularly to high levels, an unusual feature of this pathogen. Importantly, we show that the Ysa T3SS is required for robust intracellular replication. A secretion-deficient mutant lacking the secretin gene, ysaC, is defective in replication within S2 cells, marking the first demonstration of a pronounced Ysa-dependent virulence phenotype. Establishment of S2 cells as a model for Y. enterocolitica infection provides a versatile tool to elucidate the role of the Ysa T3SS in the life cycle of this gastrointestinal pathogen.


Asunto(s)
Sistemas de Secreción Bacterianos , Drosophila melanogaster/microbiología , Fenotipo , Yersiniosis/microbiología , Yersinia enterocolitica/patogenicidad , Animales , Carga Bacteriana , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Línea Celular , Citoplasma/microbiología , Modelos Animales de Enfermedad , Genes Bacterianos , Prueba de Complementación Genética , Microscopía Fluorescente , Mutación , Regiones Promotoras Genéticas , Transporte de Proteínas , Factores de Tiempo , Yersinia enterocolitica/genética , Yersinia enterocolitica/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...